

ÍNDICE

	2
2. Caraterística da Edificação	J
3. Documentação do Projeto	
4. Normas	
5. Descrição geral da instalação	
5.1 Entrada de Energia	4
5.2 Medição	4
5.3 Proteção	4
5.4 Aterramento	4
5.5 Para - Raios	4
5.6 Transformador	5
5.7 Grupo Gerador	
5.8 Tanque Diesel	5
5.9 Operadoras de Telecomunicações	6
6. Descrição geral das cargas	6
7. Cálculo da demanda da SE e do Grupo Gerador	6
7.1 Iluminação e Tomadas	6
7.2 Aparelhos de Aquecimento	
7.3 Aparelhos de Ar Condicionado	7
7.4 Bombas	7
7.5 Elevadores	7
7.6 Motores	7
7.7 Outras Cargas	8
7.8 Cálculo	8
7.9 Proteção	8

DADOS DA OBRA

Cliente: Prefeitura Municipal de Fortaleza

Endereço: Av: Auguso dos Anjos s/n - Fortaleza CE

Obra: Policlínica SER V

1. Introdução

O presente memorial tem o objetivo de descrever as soluções técnicas dadas para o projeto de instalação elétrica da Policlínica SER V

2. Caraterística da Edificação

<u>Acréscimo</u>

Ramo de Atividade: Atividades de Atendimento Hospitalar

Previsão de Ligação: dez/17
Ramal de Entrada Subterrâneo
Carga Instalada 519,95 KW
Potência Demanda Trafo 01 247,30 kVA
Trafo Adotado 300 kVA

3. Documentação do Projeto

PR-1 PR - 01_03 - S.E. PR-2 PR - 02_03 - S.E. PR-3 PR - 03_03 - S.E.

4. Normas

NBR 14039/2004 - Instalações Elétricas de Media Tensão

NT002/2011 R-03 - Fornecimento de energia elétrica em tensão primária de distribuição - COELCE

5. Descrição geral da instalação

5.1 Entrada de Energia

O fornecimento de energia elétrica será feito pela COELCE em média tensão tensão. O ponto de entrega será em poste 300/12 e o ramal de entrada será subterrâneo, conforme NT-002/2011 R-03.

5.2 Medição

A medição será feita conforme as normas e padrões da COELCE.

5.3 Proteção

A proteção em MT será feita por uma chave seccionadora tripolar (630A - 15kV-NI 95kV) com fusível limitador HH 25A

Já a proteção em BT será feito por um disjuntor tripolar termomagnético 500A-25kA

5.4 Aterramento

O sistema de aterramento para a estrutura do poste de entrada será feito por 6 hastes verticais de 3/4" x 3,00m distantes 3m uma da outra, a malha terá disposição retangular e o condutor de interligação das hastes será de cobre nu de 50mm2. Já a malha da SE e sala do gerador será composta de 12 hastes com as mesmas características da malha do poste de entrada

A resistência da malha de terra não poderá ultrapassar 10 ohms em qualquer período do ano

5.5 Para - Raios

Os para - raios instalados no poste 300/12 e na SE são do tipo: Resistor Não Linear, 12kV, 10kA, NI 95kV.

5.6 Transformador

O Transformador a ser instalado na SE para o acréscimo de carga possui as seguintes características: Transformador Trifásico, Tensão Primária 13.800V, Tensão Secundária 380/220V, c/ derivação 13.800/13.200/12.600, Triangulo Primário, Estrela com Neutro Acessível Secundário, 15kV, 60Hz, à Seco.

Potência:

Trafo: 300kVA - Z% 4,5

5.7 Grupo Gerador

Utilizaremos para a policlínica 01 Grupo Gerador com as seguintes características:

Gerador com interrupção na transferência de cargas, não sendo permitido o paralelismo entre o gerador e o sistema elétrico COELCE, sendo exigida uma chave com intertravamento mecânico ou eletromecânico visível, capaz de evitar o paralelismo. Dimensionado para atender toda a carga da SE:

Será instalado uma Unidade de Supervisão de Corrente Alternada – USCA, possuindo no mínimo as funções de proteção : 27 (subtensão), 27N (Subtensão do Neutro), 46 (desequilíbrio de corrente de fase), 59 (sobretensão).

Os ajustes das funções de proteção, neste tipo de geração, será de responsabilidade do cliente

Potência: 313kVA (Standby) - 281KVA (Prime)

Tensão: 380/220V Frequência: 60Hz nº Fase: 3

Proteção: Disjuntor Termomagnético Tripolar 500A-25kA Condutor: 3x 3n300(150)T150mm2_ - Classe 1kV Autonomia: 10 horas para o tanque de 300 litros

Carga Alimentada: Toda a Carga Instalada do Trafo de 300KVA

5.8 Tanque Diesel

O tanque de armazenamento de óleo diesel está localizado na base do grupo gerador e possui a capacidade para 300 Na sala do grupo gerador também possui um tanque para a contenção do óleo diesel conforme o projeto

5.9 Operadoras de Telecomunicações

Há sinal de telecomunicação no ponto de entrega. Operadoras: Claro, Oi, Tim e Vivo

6. Descrição geral das cargas

Deceries	CARGAS (W)						
Descrição	QGBT	GBT				TOTAL	
Ilum. Inc.							0,00
Ilum. Desc.	248.256,00						248.256,00
Tomadas							240.230,00
Outros	150.000,00						150.000,00
Ar Cond.	104.030,00						104.030,00
Bomba	10.304,00						10.304,00
Aquec.							0,00
Elevador	7.360,00						7.360,00
TOTAL	519.950,00						519.950,00

7. Cálculo da demanda da SE e do Grupo Gerador

$$D = \left(\frac{0,77}{Fp}a + 0.7b + 0.95c + 0.59d + 1.2e + F + G\right)kVA$$

- D demanda total de instalação, em kVA;
- a demanda das potências, em kW, para iluminação de uso geral calculada conforme Tabela 3 NT002/2011 R-03;
- Fp fator de potência da instalação de iluminação e tomadas.
- b demanda de todos os aparelhos de aquecimento, em kVA, calculada conforme Tabela 4 NT002/2011 R-03;
- c- demanda de todos os aparelhos de ar condicionado, em kW, caculada conforme Tabela 5 NT002/2011 R-03;
- d- potência nonimal, em kW, das bombas d'águas do sistema de serviço da instalação;
- e demanda de todos os elevadores em KW, calculada conforme Tabela $6\,$
- O valor de F deve ser determinado pela expressão:

$$F = \sum (0.87 Pnmx Fux Fs)$$

Pnm - potência nonimal dos motores em cv utilizados em processo industrial;

- Fu fator de utilização dos motores, fornecido na Tabela 7; NT002/2011 R-03
- Fs fator de simultaneidade dos motores, fornecidos na Tabela 8 NT002/2011 R-03;
- G outras cargas não relacionadas em kVA.

7.1 Iluminação e Tomadas

Potência Total (W)				
Iluminação	240 256 00			
Tomadas	248.256,00			

Fator de Demanda =

0,4 p/os primeiros 50kw

0,2 p/o que exceder de 50kw

a = 59,65 **kW**

7.2 Aparelhos de Aquecimento

Número de aparelhos de aquecimento: 0

b = 0,00 kVA

7.3 Aparelhos de Ar Condicionado

Número de aparelhos de ar condicionado: 76

Potência total (W): 104.030

Fator de demanda: 0,65

c = 67,62 **kW**

7.4 Bombas

Número de bombas: 4
Potência total (W): 10.304
Fator de demanda: 1,00

d = 10,30 kW

7.5 Elevadores

Número de elevadores: 1 Potência total (W): 7.360 Fator de demanda: 0,80

e = 5,888 **kW**

7.6 Motores

Potência nominal do motor (Pnm): cv

Fator de utulização (FU):

Fator de Simultaneidade (FS):

F = 0 **kW**

7.7 Outras Cargas

Carga Instalada:75,00 KWCarga Instalada:75,00 KWFator de Pot.:1Fator de Pot.:1Fator de Demanda:0,8Fator de Demanda:0,8

(Raio X) (Tomografia)

G= 120,00 **kVA**

7.8 Cálculo

Onde: Fp = 0,92 $D = \left(\frac{0,77}{Fp}a + 0,7b + 0,95c + 0,59d + 1,2e + F + G\right)kVA$

Demanda

D= 247,30 kVA

Trafo Adotado de 300 kVA

7.9 Proteção

 $I = \frac{P}{\sqrt{3 \times 380}}$ I = Corrente em A P= potência demanda em kVA

I = 455,8 A

Proteção = 500 A - 25kA

 $\label{eq:conductor} \begin{array}{ll} \text{Condutor fase} = & 3\text{n}300 \text{ mm}^2 - 1\text{kV} \, / \, \text{XLPE} \\ \text{Condutor neutro e terra} = & (150)\text{T}150 \text{ mm}^2 - 1\text{kV} \, / \, \text{XLPE} \\ \end{array}$

OSVALDO HOLANDA DE ARAUJO FILHO ENG. ELETRICISTA - CREA-CE 9403D

63